picture
 
孙旭平
职称与职务
教 授
专      业
分析化学
电      话
028-85418242
E-Mail
简  历

教育及工作经历

1993.09–1997.07,西华师范大学,化学教育(学士)
2000.09–2005.12,中科院长春应化所,分析化学(博士)
1997.07–2004.10,西华师范大学化学化工学院,助教
2006.04–2007.05,德国Konstanz University化学系,博士后(洪堡学者)
2007.06–2008.05,加拿大Toronto University药理系,博士后
2008.06–2009.07,美国Purdue University化学系,博士后
2010.01–2015.09,中科院长春应化所电分析化学国家重点实验室,研究员,博导
2011.11–,沙特King Abdulaziz University化学系,兼职教授
2015.10–,四川大学化学学院,教授
学术任职
Journal of Nanomaterials, American Journal of Nanotechnology, American Journal of Analytical Chemistry,Biochemistry and Analytical Biochemistry等杂志编委
 
主要研究方向

 功能材料的表界面设计调与调控及其分析传感、催化应用

主要工作业绩

 荣誉及获奖情况

中科院院长优秀奖(2004) 
中科院优秀博士学位论文(2007)
全国百篇优秀博士学位论文(2008)
吉林省高层次创新创业人才(2010)
长春市首批青年科技英才(2012)
主要学术贡献
率先采用低温磷化反应实现了无表面活性剂过渡金属磷化物的快速可控制备,发展三维过渡金属磷化物阵列电极,成功用于高效电催化还原H+析氢,并分析探讨了催化机理;提出基于过渡金属磷化物的电化学pH传感新技术,创新性地利用过渡金属磷化物的H+还原催化特性加速光导电子转移,发展CoP纳米线新型荧光淬灭剂,实现了快速、高效DNA检测;构建了基于富共轭π电子纳米结构的DNA荧光传感界面,首次以生物质为原料合成了杂原子掺杂荧光碳点,利用表面氮原子对Cu2+的富集能力,发展了基于氮掺杂碳点的荧光Cu2+传感新策略。已在J. Am. Chem. Soc.Angew. Chem. Int. Ed.Adv. Mater.Nucleic Acids Res.Chem. Mater.ACS Catal.ChemSusChemAnal. Chem.等刊物发表研究论文200余篇,22篇论文入选ESI数据库高被引论文,5篇论文入选ESI数据库热点论文,论文他引6000余次,H-index 48。
 

 

代表性成果 (获奖成果、专著、论文、专利)

 代表性论文

  1. Wang, J.; Cui, W.; Liu, Q.; Xing, Z.; Asiri, A. M.; Sun, X.* Recent progress in Co-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2015, DOI: 10.1002/adma.201502696.
  2. Tian, J.; Cheng, N.; Xing, W.; Sun, X.* Cobalt phosphide nanowires: efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light. Angew. Chem. Int. Ed.2015, 54, 5493-5497.
  3. Tang, C.; Chen, N.; Pu, Z.; Xing, W.; Sun, X.* NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. Int. Ed.2015, 54, 9351-9355.
  4. Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X.* Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0−14. J. Am. Chem. Soc.2014, 136, 7587-7590.
  5. Liu, Q.; Tian, J.; Asiri, A. M.; Sun, X.* Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem. Int. Ed.2014, 53, 6710-6714.
  6. Tian, J.; Liu, Q.; Cheng, N.; Asiri, A. M.; Sun, X.* Self-supported Cu3P nanowires array as an integrated high-performance 3D cathode for generating hydrogen from water. Angew. Chem. Int. Ed.2014, 53, 9577-9581.
  7. Jiang, P.; Liu, Q.; Liang, Y.; Tian, J.; Asiri, A. M.; Sun, X.* A cost-effective 3D hydrogen evolution cathode with exceptionally high catalytic activity: FeP nanowires array as the active phase. Angew. Chem. Int. Ed.2014,53,12855-12859.
  8. Xing, Z.; Liu, Q.; Asiri, A. M.; Sun, X.* Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water. Adv. Mater.2014, 26, 5702-5707.
  9. Liu, S.; Tian, J.; Wang, L.; Zhang, Y.; Qin, X.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.* Hydrothermal treatment of grass: a low cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots that can be used as an effective fluorescent sensing platform for label-free sensitive and selective detection of Cu(II) ions. Adv. Mater. 2012, 24, 2307-2310.
  10. Wang, L.; Zhang, Y.; Tian, J.; Li, H.; Sun, X.* Conjugation polymer nanobelts: a novel fluorescent sensing platform for nucleic acid detection. Nucleic Acids Res.2011, 39, e37-e42.
  11. Sun, X.; Ko, S. H.; Zhang, C.; Ribbe, A. E.; Mao, C.* Surface-mediated DNA self-assembly. J. Am. Chem. Soc.2009, 131, 13248-13249.
  12. 10. Sun, X.; Dong, S.*; Wang, E.* Coordination-induced formation of submicrometer-scale, monodisperse, spherical colloids of organic-inorganic hybrid materials at room temperature. J. Am. Chem. Soc.2005,127, 13102-13103.
  13. 11. Sun, X.; Dong, S.*; Wang, E.* Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route. Angew. Chem. Int. Ed.2004,43, 6360-6363.
  14. Tian, J.; Li, Q.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.* Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal. Chem. 2013, 85, 5595-5599.
  15. Lu, W.; Qin, X.; Liu, S.; Chang, G.; Zhang, Y.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.* Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for rapid, sensitive, and selective detection of mercury(II) ions. Anal. Chem. 2012, 84, 5351-5357.
  16. Sun, X.; Du, Y.; Zhang, L.; Dong, S.*; Wang, E.* Luminescent supramolecular microstructures containing Ru(bpy)32+: solution-based self-assembly preparation and solid-state electrochemiluminescence detection application. Anal. Chem. 2007, 79, 2588-2592.
  17. Sun, X.; Du, Y.; Zhang, L.; Dong, S.*; Wang, E.* Pt nanoparticles: heat-treatment-based preparation and Ru(bpy)32+-mediated formation of aggregates that can form stable film on bare solid electrode surface for solid-state electrochemiluminescene detection. Anal. Chem. 2006, 78, 6674-6677.
  18. Sun, X.; Du, Y.; Zhang, L.; Dong, S.*; Wang, E.* Method for effective immobilization of Ru(bpy)32+ on electrode surface toward solid-state electrochemiluminescene detection. Anal. Chem. 200577, 8166-8169.
  19. Xing, Z.; Liu, Q.; Asiri, A. M.; Sun, X.* High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles. ACS Catal.2015, 5, 145-149.
  20. Liang, Y.; Liu, Q.; Asiri, A. M.; Sun, X.*; Luo, Y.* Self-supported FeP nanorod arrays: a cost-effective 3D hydrogen evolution cathode with high catalytic activity. ACS Catal.2014, 4, 4065-4069.
  21. Cui, W.; Cheng, N.; Liu, Q.; Ge, C.; Asiri, A. M.; Sun, X.* Mo2C nanoparticles decorated graphitic carbon sheets: biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation. ACS Catal. 2014, 4, 2658-2661.
  22. Tian, J.; Li, H.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.* Photo-assisted preparation of Cobalt Phosphate/graphene oxide composites: a novel oxygen-evolving catalyst with high efficiency. Small2013, 9, 2709-2714.
  23. Li, H.; Zhang, Y.; Luo, Y.; Sun, X.* Nano-C60: a novel, effective fluorescent sensing platform for biomolecular detection. Small 2011, 7, 1562-1568.
  24. Pu, Z.; Liu, Q.; Jiang, P.; Asiri, A. M.; Obaid, A. Y.; Sun, X.* CoP nanosheet arrays supported on a Ti plate: an efficient cathode for electrochemical hydrogen evolution. Chem. Mater.2014, 26, 4326-4329.
  25. Xing, Z.; Liu, Q.; Xing, W.; Asiri, A. M.; Sun, X.* Interconnected Co-entrapped, N-doped carbon nanotube film as active hydrogen evolution cathode over the whole pH range.ChemSusChem 2015, 8, 1850-1855.
  26. Li, Q.; Cui, W.; Tian, J.; Xing, Z.; Liu, Q.; Xing, W.; Asiri, A. M.; Sun, X.* N-doped carbon-coated tungsten oxynitride nanowire arrays for highly efficient electrochemical hydrogen evolution. ChemSusChem2015, 15, 2487-2491.
  27. Tian, J.; Liu, Q.; Asiri, A. M.; Alamry, K. A.; Sun, X.* Ultrathin graphitic C3N4 nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction. ChemSusChem2014, 7, 2125-2130.
  28. Pu, Z.; Liu, Q.; Tang, C.; Asiri, A. M.; Sun, X.* Ni2P nanoparticle films supported on a Ti plate asan efficient hydrogen evolution cathode. Nanoscale2014, 6, 11031-11034.
  29. Xing, Z.; Tian, J.; Liu, Q.; Asiri, A. M.; Jiang, P.; Sun, X.* Holey graphene nanosheets: large-scale rapid preparation and their application toward high-effective water cleaning. Nanoscale 2014, 6, 11659-11663.
  30. Jiang, P.; Liu, Q.; Sun, X.* NiP2 nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale2014, 6, 13440-13445 (selected as a Hot Article by Editor's choice).
  31. Tian, J.; Liu, Q.; Ge, C.; Xing, Z.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.* Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale 2013, 5, 8921-8924.
  32. Tian, J.; Liu, Q.;Asiri, A. M.; Qusti, A. H.; Al-Youbi, A. O.; Sun, X.*Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 2013, 5, 11604-11609.
  33. Li, H.; Zhai, J.; Sun, X.* Nano-C60 as a novel, effective fluorescent sensing platform for mercury(II) ion detection at critical sensitivity and selectivity. Nanoscale 2011, 3, 2155-2157.
  34. Liu, S.; Wang, L.; Luo, Y.; Tian, J.; Li, H.; Sun, X.* Polyaniline nanofibres for fluorescent nucleic acid detection. Nanoscale2011, 3, 967-969.
  35. Cheng, N.; Liu, Q.; Tian, J.; Xue, Y.; Asiri, A. M.; Jiang, H.; He, Y.*; Sun, X.* Acidically oxidized carbon cloth: a novel metal-free oxygen evolution electrode with high catalytic activity. Chem. Commun.2015, 51, 1616-1619.
  36. Cui, W.; Liu, Q.; Cheng, N.; Asiri, A. M.; Sun, X.* Activated carbon nanotubes: a high-active metal-free electrocatalyst for hydrogen evolution reaction. Chem. Commun.2014, 50, 9340-9342.
  37. Li, H.; Tian, J.; Wang, L.; Zhang, Y.; Sun, X.* Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chem. Commun.2011, 47, 961-963.
  38. Li, H.; Sun, X.* Fluorescence-enhanced nucleic acid detection: using coordination polymer colloids as a sensing platform. Chem. Commun. 2011, 47, 2625-2627.
  39. Zhang, Y.; Sun, X.* A novel fluorescent aptasensor for thrombin detection: using poly(m-phenylenediamine) rods as an effective sensing platform. Chem. Commun. 2011, 47, 3927-3929.
  40. Lu, W.; Liu, S.; Qin, X.; Wang, L.; Tian, J.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.* High-yield, large-scale production of few-layer graphene flakes within seconds: using chlorosulfonic acid and H2O2 as exfoliating agents. J. Mater. Chem.2012, 2, 8775-8777. (top 10 accessed articles)
  41. Tian, J.; Liu, Q.; Shi, J.; Hu, J.; Asiri, A. M.; Sun, X.*; He, Y.* Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal-organic framework nanorods: synergies of the metal center and organic linker. Biosens. Bioelectron. 2015, 71, 1-6.
  42. Xing, Z.; Tian, J.; Asiri, A. M.; Qusti, A. H.; Al-Youbi, A. O.; Sun, X.* Two-dimensional hybrid mesoporous Fe2O3-graphene nanostructures: a highly active and reusable peroxidase mimetic toward rapid, highly sensitive optical detection of glucose. Biosens. Bioelectron.2014, 52, 452-457.
  43. Liu, S.; Tian, J.; Wang, L.; Luo, Y.; Lu, W.; Sun, X.* Self-assembled graphene platelet-glucose oxidase nanostructures for glucose biosensing. Biosens. Bioelectron. 2011, 26, 4491-4496.
  44. Zhang, Y.; Liu, S.; Sun, X.* Mesoporous carbon microparticles as a novel fluorescent sensing platform for thrombin detection. Biosens. Bioelectron. 2011, 26, 3876-3880.
  45. Li, H.; Zhai, J.; Tian, J.; Luo, Y.; Sun, X.* Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury(II) ion in aqueous solution. Biosens. Bioelectron. 2011, 26, 4656-4660.
  46. Lu, W.; Luo, Y.; Chang, G.; Sun, X.* Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection. Biosens. Bioelectron. 2011, 26, 4791-4797. (most read articles)
  47. Li, H.; Sun, X.* Fluorescence resonance energy transfer dye-labeled probe for fluorescence-enhanced DNA detection: an effective strategy to greatly improve discrimination ability toward single-base mismatch. Biosens. Bioelectron. 2011, 27, 167-171.
  48. Zhang, Y.; Chang, G.; Liu, S.; Lu, W.; Tian, J.; Sun, X.* Green preparation of Au nanoplates and their application for glucose sensing. Biosens. Bioelectron. 2011, 28, 344-348.
  49. Liu, S.; Tian, J.; Wang, L.; Sun, X.* A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon 2011, 49, 3158-3164.
  50. Liu, S.; Tian, J.; Wang, L.; Li, H.;Zhang, Y.; Sun, X.* Stable aqueous dispersion of graphene nanosheets: noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Macromolecules 2010, 43, 10078-10083.